企业资讯,产品资讯_博拉资讯 技术资讯 学python,怎么能不学习scrapy呢!

学python,怎么能不学习scrapy呢!

广告位

摘要:本文讲述如何编写scrapy爬虫。

本文分享自华为云社区《学python,怎么能不学习scrapy呢,这篇博客带你学会它》,作者: 梦想橡皮擦 。

在正式编写爬虫案例前,先对 scrapy 进行一下系统的学习。

scrapy 安装与简单运行

使用命令 pip install scrapy 进行安装,成功之后,还需要随手收藏几个网址,以便于后续学习使用。

  • scrapy 官网:https://scrapy.org;
  • scrapy 文档:https://doc.scrapy.org/en/latest/intro/tutorial.html;
  • scrapy 更新日志:https://docs.scrapy.org/en/latest/news.html。

安装完毕之后,在控制台直接输入 scrapy,出现如下命令表示安装成功。

> scrapy  Scrapy 2.5.0 - no active project  Usage:   scrapy <command> [options] [args]  Available commands:

学python,怎么能不学习scrapy呢!

上述截图是 scrapy 的内置命令列表,标准的格式的 scrapy <command> <options> <args>,通过 scrapy <command> -h 可以查看指定命令的帮助手册。

scrapy 中提供两种类型的命令,一种是全局的,一种的项目中的,后者需要进入到 scrapy 目录才可运行。

这些命令无需一开始就完全记住,随时可查,有几个比较常用,例如:

**scrpy startproject <项目名> **

该命令先依据 项目名 创建一个文件夹,然后再文件夹下创建于个 scrpy 项目,这一步是后续所有代码的起点。

> scrapy startproject my_scrapy  > New Scrapy project 'my_scrapy', using template directory 'e:pythonprojectvenvlibsite-packagesscrapytemplatesproject', created in:  # 一个新的 scrapy 项目被创建了,使用的模板是 XXX,创建的位置是 XXX      E:pythonProject滚雪球学Python第4轮my_scrapy  You can start your first spider with:  # 开启你的第一个爬虫程序   cd my_scrapy # 进入文件夹   scrapy genspider example example.com # 使用项目命令创建爬虫文件

上述内容增加了一些注释,可以比对着进行学习,默认生成的文件在 python 运行时目录,如果想修改项目目录,请使用如下格式命令:

scrapy startproject myproject [project_dir]

例如

scrapy startproject myproject d:/d1

命令依据模板创建出来的项目结构如下所示,其中红色下划线的是项目目录,而绿色下划线才是 scrapy 项目,如果想要运行项目命令,则必须先进入红色下划线 my_scrapy 文件夹,在项目目录中才能控制项目。

学python,怎么能不学习scrapy呢!

下面生成一个爬虫文件

使用命令 scrapy genspider [-t template] <name> <domain> 生成爬虫文件,该方式是一种快捷操作,也可以完全手动创建。创建的爬虫文件会出现在 当前目录或者项目文件夹中的 spiders 文件夹中,name 是爬虫名字,domain 用在爬虫文件中的 alowed_domains 和 start_urls 数据中,[-t template] 表示可以选择生成文件模板。

查看所有模板使用如下命令,默认模板是 basic。

> scrapy genspider -l    basic    crawl   csvfeed   xmlfeed

创建第一个 scrapy 爬虫文件,测试命令如下:

>scrapy genspider pm imspm.com  Created spider 'pm' using template 'basic' in module:    my_project.spiders.pm

此时在 spiders 文件夹中,出现 pm.py 文件,该文件内容如下所示:

import scrapy  class PmSpider(scrapy.Spider):      name = 'pm'   allowed_domains = ['imspm.com']   start_urls = ['http://imspm.com/']   def parse(self, response):   pass

测试 scrapy 爬虫运行

使用命令 scrapy crawl <spider>,spider 是上文生成的爬虫文件名,出现如下内容,表示爬虫正确加载。

>scrapy crawl pm  2021-10-02 21:34:34 [scrapy.utils.log] INFO: Scrapy 2.5.0 started (bot: my_project)  [...]

scrapy 基本应用

scrapy 工作流程非常简单:

  1. 采集第一页网页源码;
  2. 解析第一页源码,并获取下一页链接;
  3. 请求下一页网页源码;
  4. 解析源码,并获取下一页源码;
  5. […]
  6. 过程当中,提取到目标数据之后,就进行保存。

接下来为大家演示 scrapy 一个完整的案例应用,作为 爬虫 120 例 scrapy 部分的第一例。

> scrapy startproject my_project 爬虫  > cd 爬虫  > scrapy genspider pm imspm.com

获得项目结构如下:

学python,怎么能不学习scrapy呢!

上图中一些文件的简单说明。

  • scrapy.cfg:配置文件路径与部署配置;
  • items.py:目标数据的结构;
  • middlewares.py:中间件文件;
  • pipelines.py:管道文件;
  • settings.py:配置信息。

使用 scrapy crawl pm 运行爬虫之后,所有输出内容与说明如下所示:

学python,怎么能不学习scrapy呢!

上述代码请求次数为 7 次,原因是在 pm.py 文件中默认没有添加 www,如果增加该内容之后,请求次数变为 4。

学python,怎么能不学习scrapy呢!

现在的 pm.py 文件代码如下所示:

import scrapy  class PmSpider(scrapy.Spider):      name = 'pm'   allowed_domains = ['www.imspm.com']   start_urls = ['http://www.imspm.com/']   def parse(self, response):   print(response.text)

其中的 parse 表示请求 start_urls 中的地址,获取响应之后的回调函数,直接通过参数 response 的 .text 属性进行网页源码的输出。

学python,怎么能不学习scrapy呢!

获取到源码之后,要对源码进行解析与存储

在存储之前,需要手动定义一个数据结构,该内容在 items.py 文件实现,对代码中的类名进行了修改,MyProjectItem → ArticleItem。

import scrapy  class ArticleItem(scrapy.Item):   # define the fields for your item here like:   # name = scrapy.Field()      title = scrapy.Field() # 文章标题   url = scrapy.Field() # 文章地址      author = scrapy.Field() # 作者

修改 pm.py 文件中的 parse 函数,增加网页解析相关操作,该操作类似 pyquery 知识点,直接观察代码即可掌握。

 def parse(self, response):   # print(response.text)   list_item = response.css('.list-item-default')   # print(list_item)   for item in list_item:              title = item.css('.title::text').extract_first() # 直接获取文本   url = item.css('.a_block::attr(href)').extract_first() # 获取属性值              author = item.css('.author::text').extract_first() # 直接获取文本   print(title, url, author)

其中 response.css 方法返回的是一个选择器列表,可以迭代该列表,然后对其中的对象调用 css 方法。

  • item.css(‘.title::text’),获取标签内文本;
  • item.css(‘.a_block::attr(href)’),获取标签属性值;
  • extract_first():解析列表第一项;
  • extract():获取列表。

在 pm.py 中导入 items.py 中的 ArticleItem 类,然后按照下述代码进行修改:

 def parse(self, response):   # print(response.text)   list_item = response.css('.list-item-default')   # print(list_item)   for i in list_item:              item = ArticleItem()              title = i.css('.title::text').extract_first() # 直接获取文本   url = i.css('.a_block::attr(href)').extract_first() # 获取属性值              author = i.css('.author::text').extract_first() # 直接获取文本   # print(title, url, author)   # 对 item 进行赋值              item['title'] = title              item['url'] = url              item['author'] = author   yield item

此时在运行 scrapy 爬虫,就会出现如下提示信息。

学python,怎么能不学习scrapy呢!

此时完成了一个单页爬虫

接下来对 parse 函数再次改造,使其在解析完第 1 页之后,可以解析第 2 页数据。

 def parse(self, response):   # print(response.text)   list_item = response.css('.list-item-default')   # print(list_item)   for i in list_item:              item = ArticleItem()              title = i.css('.title::text').extract_first() # 直接获取文本   url = i.css('.a_block::attr(href)').extract_first() # 获取属性值              author = i.css('.author::text').extract_first() # 直接获取文本   # print(title, url, author)   # 对 item 进行赋值              item['title'] = title              item['url'] = url              item['author'] = author   yield item   next = response.css('.nav a:nth-last-child(2)::attr(href)').extract_first() # 获取下一页链接   # print(next)   # 再次生成一个请求   yield scrapy.Request(url=next, callback=self.parse)

上述代码中,变量 next 表示下一页地址,通过 response.css 函数获取链接,其中的 css 选择器请重点学习。
yield scrapy.Request(url=next, callback=self.parse) 表示再次创建一个请求,并且该请求的回调函数是 parse 本身,代码运行效果如下所示。

学python,怎么能不学习scrapy呢!

如果想要保存运行结果,运行下面的命令即可。

scrapy crawl pm -o pm.json

学python,怎么能不学习scrapy呢!

如果想要将每条数据存储为单独一行,使用如下命令即可 scrapy crawl pm -o pm.jl 。

学python,怎么能不学习scrapy呢!

生成的文件还支持 csv 、 xml、marchal、pickle ,可自行尝试。

下面将数据管道利用起来

打开 pipelines.py 文件,修改类名 MyProjectPipeline → TitlePipeline,然后编入如下代码:

class TitlePipeline:   def process_item(self, item, spider): # 移除标题中的空格   if item["title"]:              item["title"] = item["title"].strip()   return item   else:   return DropItem("异常数据")

该代码用于移除标题中的左右空格。

编写完毕,需要在 settings.py 文件中开启 ITEM_PIPELINES 配置。

ITEM_PIPELINES = {   'my_project.pipelines.TitlePipeline': 300,  }

300 是 PIPELINES 运行的优先级顺序,根据需要修改即可。再次运行爬虫代码,会发现标题的左右空格已经被移除。

到此 scrapy 的一个基本爬虫已经编写完毕。

 

点击关注,第一时间了解华为云新鲜技术~

本文来自网络,不代表企业资讯,产品资讯_博拉资讯立场,转载请注明出处。

作者: 博拉资讯

上一篇
下一篇
广告位

发表回复

返回顶部